MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury.

نویسندگان

  • Xiaohong Wang
  • Xiaowei Zhang
  • Xiao-Ping Ren
  • Jing Chen
  • Hongzhu Liu
  • Junqi Yang
  • Mario Medvedovic
  • Zhuowei Hu
  • Guo-Chang Fan
چکیده

BACKGROUND MicroRNAs (miRs) participate in many cardiac pathophysiological processes, including ischemia/reperfusion (I/R)-induced cardiac injury. Recently, we and others observed that miR-494 was downregulated in murine I/R-injured and human infarcted hearts. However, the functional consequence of miR-494 in response to I/R remains unknown. METHODS AND RESULTS We generated a mouse model with cardiac-specific overexpression of miR-494. Transgenic hearts and wild-type hearts from multiple lines were subjected to global no-flow I/R with the Langendorff system. Transgenic hearts exhibited improved recovery of contractile performance over the reperfusion period. This improvement was accompanied by remarkable decreases in both lactate dehydrogenase release and the extent of apoptosis in transgenic hearts compared with wild-type hearts. In addition, myocardial infarction size was significantly reduced in transgenic hearts on I/R in vivo compared with wild-type hearts. Similarly, short-term overexpression of miR-494 in cultured adult cardiomyocytes demonstrated an inhibition of caspase-3 activity and reduced cell death on simulated I/R. In vivo treatment with antisense oligonucleotide miR-494 increased I/R-triggered cardiac injury relative to the administration of mutant antisense oligonucleotide miR-494 and saline controls. We further identified that 3 proapoptotic proteins (PTEN, ROCK1, and CaMKIIδ) and 2 antiapoptotic proteins (FGFR2 and LIF) were authentic targets for miR-494. Importantly, the Akt-mitochondrial signaling pathway was activated in miR-494-overexpressing myocytes. CONCLUSIONS Our findings suggest that although miR-494 targets both proapoptotic and antiapoptotic proteins, the ultimate consequence is activation of the Akt pathway, leading to cardioprotective effects against I/R-induced injury. Thus, miR-494 may constitute a new therapeutic agent for the treatment of ischemic heart disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...

متن کامل

Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli.

Ischemia-reperfusion-induced calcium overload and production of reactive oxygen species can trigger apoptosis by promoting the release of proapoptotic factors via the mitochondrial permeability transition pore. While it is clear that endurance exercise provides cardioprotection against ischemia-reperfusion-induced injury, it is unknown if exercise training directly alters mitochondria phenotype...

متن کامل

Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats

Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...

متن کامل

MicroRNA-145 Protects Cardiomyocytes against Hydrogen Peroxide (H2O2)-Induced Apoptosis through Targeting the Mitochondria Apoptotic Pathway

MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 122 13  شماره 

صفحات  -

تاریخ انتشار 2010